Fabrication of a Floatable Micron-Sized Enzyme Device Using Diatom Frustules

利用硅藻壳制造可漂浮的微米级酶装置

阅读:9
作者:Nay San Lin, Kota Hirayama, Masaki Kitamura, Shinji Koide, Hiromasa Kitajima, Takunori Harada, Shigeki Mayama, Kazuo Umemura

Abstract

Immobilization of enzymes has been widely reported due to their reusability, thermal stability, better storage abilities, and so on. However, there are still problems that immobilized enzymes do not have free movements to react to substrates during enzyme reactions and their enzyme activity becomes weak. Moreover, when only the porosity of support materials is focused, some problems such as enzyme distortion can negatively affect the enzyme activity. Being a solution to these problems, a new function "floatability" of enzyme devices has been discussed. A "floatable" micron-sized enzyme device was fabricated to enhance the free movements of immobilized enzymes. Diatom frustules, natural nanoporous biosilica, were used to attach papain enzyme molecules. The floatability of the frustules, evaluated by macroscopic and microscopic methods, was significantly better than that of four other SiO2 materials, such as diatomaceous earth (DE), which have been widely used to fabricate micron-sized enzyme devices. The frustules were fully suspended at 30 °C for 1 h without stirring, although they settled at room temperature. When enzyme assays were performed at room temperature, 37, and 60 °C with or without external stirring, the proposed frustule device showed the highest enzyme activity under all conditions among papain devices similarly prepared using other SiO2 materials. It was confirmed by the free papain experiments that the frustule device was active enough for enzyme reactions. Our data indicated that the high floatability of the reusable frustule device, and its large surface area, is effective in maximizing enzyme activity due to the high probability to react to substrates.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。