Crown Ether-Capped Gold Nanoclusters as a Multimodal Platform for Bioimaging

冠醚覆盖的金纳米团簇作为生物成像的多模态平台

阅读:6
作者:Patryk Obstarczyk, Anna Pniakowska, Nonappa, Marcin P Grzelczak, Joanna Olesiak-Bańska

Abstract

The distinct polarity of biomolecule surfaces plays a pivotal role in their biochemistry and functions as it is involved in numerous processes, such as folding, aggregation, or denaturation. Therefore, there is a need to image both hydrophilic and hydrophobic bio-interfaces with markers of distinct responses to hydrophobic and hydrophilic environments. In this work, we present a synthesis, characterization, and application of ultrasmall gold nanoclusters capped with a 12-crown-4 ligand. The nanoclusters present an amphiphilic character and can be successfully transferred between aqueous and organic solvents and have their physicochemical integrity retained. They can serve as probes for multimodal bioimaging with light (as they emit near-infrared luminescence) and electron microscopy (due to the high electron density of gold). In this work, we used protein superstructures, namely, amyloid spherulites, as a hydrophobic surface model and individual amyloid fibrils with a mixed hydrophobicity profile. Our nanoclusters spontaneously stained densely packed amyloid spherulites as observed under fluorescence microscopy, which is limited for hydrophilic markers. Moreover, our clusters revealed structural features of individual amyloid fibrils at a nanoscale as observed under a transmission electron microscope. We show the potential of crown ether-capped gold nanoclusters in multimodal structural characterization of bio-interfaces where the amphiphilic character of the supramolecular ligand is required.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。