Synthesis and Antiscaling Evaluation of Novel Hydroxybisphosphonates for Oilfield Applications

油田应用新型羟基双膦酸盐的合成及防垢评价

阅读:7
作者:Mohamed F Mady, Abdur Rehman, Malcolm A Kelland

Abstract

Organophosphorous compounds are still widely used as potential scale inhibitors in the upstream oil and gas industry, particularly in squeeze treatments as they have good adsorption properties on rock and are easily detectable. However, most phosphonate-based scale inhibitors have some drawbacks, such as poor biodegradability and various incompatibilities with the production system. The low toxicity of bisphosphonates motivated us to test a series of aliphatic and aromatic hydroxybisphosphonates as new oilfield scale inhibitors for calcium carbonate (calcite) and barium sulfate (barite) scales. Thus, the well-known bone-targeting drugs 3-amino-1-hydroxypropane-1,1-bisphosphonic acid (pamidronic acid, SI-1), 4-amino-1-hydroxybutane-1,1-bisphosphonic acid (alendronic acid, SI-2), 5-amino-1-hydroxypentane-1,1-bisphosphonic acid (SI-3), and hydroxyphenylmethylene-1,1-bisphosphonic acid (fenidronic acid, SI-6) are studied along with novel, specially designed bisphosphonates (1,4-dihydroxybutane-1,1,4,4-tetrayl)tetrakisphosphonic acid (SI-4), (1,6-dihydroxyhexane-1,1,6,6-tetrayl)tetrakisphosphonic acid (SI-5), and ((4- aminophenyl)(hydroxy)methylene)bisphosphonic acid (SI-7) in a dynamic tube-blocking scale rig at 100 °C and 80 bar according to typical North Sea conditions. The scale inhibition performance of the new SIs was compared to that of the commercial 1-hydroxyethylidene bisphosphonic acid (HEDP) and aminotrismethylenephosphonic acid (ATMP). The results indicate that all synthesized hydroxybisphosphonates provide reasonable inhibition performance against calcite scaling and show good thermal stability at 130 °C for 7 days under anaerobic conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。