Comparative proteomic analysis of Neisseria meningitidis wildtype and dprA null mutant strains links DNA processing to pilus biogenesis

脑膜炎奈瑟菌野生型和 dprA 无效突变株的比较蛋白质组学分析将 DNA 加工与菌毛生物发生联系起来

阅读:5
作者:Getachew Tesfaye Beyene, Shewit Kalayou, Tahira Riaz, Tone Tonjum

Background

DNA processing chain A (DprA) is a DNA binding protein which is ubiquitous in bacteria, and is required for DNA transformation to various extents among bacterial species. However, the interaction of DprA with competence and recombination proteins is poorly understood. Therefore, the proteomes of whole Neisseria meningitidis (Nm) wildtype and dprA mutant cells were compared. Such a comparative proteomic analysis increases our understanding of the interactions of DprA with other Nm components and may elucidate its potential role beyond DNA processing in transformation.

Conclusions

DprA interacts with proteins essential for Nm DNA recombination in transformation, pilus biogenesis, and other functions associated with the inner membrane. Inverse downregulation of Nm DprA and PilG expression in the corresponding mutants indicates a link between DNA processing and pilus biogenesis.

Results

Using label-free quantitative proteomics, a total of 1057 unique Nm proteins were identified, out of which 100 were quantified as differentially abundant (P ≤ 0.05 and fold change ≥ |2|) in the dprA null mutant. Proteins involved in homologous recombination (RecA, UvrD and HolA), pilus biogenesis (PilG, PilT1, PilT2, PilM, PilO, PilQ, PilF and PilE), cell division, including core energy metabolism, and response to oxidative stress were downregulated in the Nm dprA null mutant. The mass spectrometry data are available via ProteomeXchange with identifier PXD006121. Immunoblotting and co-immunoprecipitation were employed to validate the association of DprA with PilG. The analysis revealed reduced amounts of PilG in the dprA null mutant and reduced amounts of DprA in the Nm pilG null mutant. Moreover, a number of pilus biogenesis proteins were shown to interact with DprA and /or PilG. Conclusions: DprA interacts with proteins essential for Nm DNA recombination in transformation, pilus biogenesis, and other functions associated with the inner membrane. Inverse downregulation of Nm DprA and PilG expression in the corresponding mutants indicates a link between DNA processing and pilus biogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。