Early-Life m6A RNA Demethylation by Fat Mass and Obesity-Associated Protein (FTO) Influences Resilience or Vulnerability to Heat Stress Later in Life

生命早期脂肪质量和肥胖相关蛋白 (FTO) 导致的 m6A RNA 去甲基化影响生命后期对热应激的适应力或脆弱性

阅读:6
作者:Tatiana Kisliouk, Tali Rosenberg, Osher Ben-Nun, Mark Ruzal, Noam Meiri

Abstract

Early life heat stress leads to either resilience or vulnerability to a similar stress later in life. We have previously shown that this tuning of the stress response depends on neural network organization in the preoptic anterior hypothalamus (PO/AH) thermal response center and is regulated by epigenetic mechanisms. Here, we expand our understanding of stress response establishment describing a role for epitranscriptomic regulation of the epigenetic machinery. Specifically, we explore the role of N6-methyladenosine (m6A) RNA methylation in long-term response to heat stress. Heat conditioning of 3-d-old chicks diminished m6A RNA methylation in the hypothalamus, simultaneously with an increase in the mRNA levels of the m6A demethylase, fat mass and obesity-associated protein (FTO). Moreover, a week later, methylation of two heat stress-related transcripts, histone 3 lysine 27 (H3K27) methyltransferase, enhancer of zeste homolog 2 (EZH2) and brain-derived neurotrophic factor (BDNF), were downregulated in harsh-heat-conditioned chicks. During heat challenge a week after conditioning, there was a reduction of m6A levels in mild-heat-conditioned chicks and an elevation in harsh-heat-conditioned ones. This increase in m6A modification was negatively correlated with the expression levels of both BDNF and EZH2 Antisense "knock-down" of FTO caused an elevation of global m6A RNA methylation, reduction of EZH2 and BDNF mRNA levels, and decrease in global H3K27 dimethylation as well as dimethyl H3K27 level along BDNF coding region, and, finally, led to heat vulnerability. These findings emphasize the multilevel regulation of gene expression, including both epigenetic and epitranscriptomic regulatory mechanisms, fine-tuning the neural network organization in a response to stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。