Highly Cross-linked Epoxy Coating for Barring Organophosphate Chemical Warfare Agent Permeation

高度交联环氧涂层可阻止有机磷酸酯化学战剂渗透

阅读:5
作者:Guoqing Wu, Dongjiu Zhang, Wei Xu, Hongjun Zhang, Likun Chen, Yongchao Zheng, Yi Xin, Hong Li, Yan Cui

Abstract

Chemical warfare agents (CWAs) can be absorbed in polymeric coatings through absorption and permeation, thus presenting a lethal touch and vapor hazards to people. Developing a highly impermeable polymer coating against CWAs, especially against organophosphate CWAs (OPs), is challenging and desirable. Herein, fluorinated epoxy (F-EP) and epoxy (EP) coatings with different cross-link densities were prepared to resist OPs. The effects of the polymer coating structure, including cross-link density, chemical composition and free volume, on the chemical resistance to dimethyl methylphosphonate (DMMP, Soman simulant) were investigated in detail. Meanwhile, the chemical resistance to Soman and VX was examined. The results reveal that the cross-link density is a critical factor in determining the chemical resistance of the coatings. Highly cross-linked EP and F-EP coatings with dense and solid cross-linked networks can fully bar DMMP and OPs permeation during the test time. At low or medium cross-link densities, the EP coating with a lower retention of DMMP exhibited a higher resistance than the F-EP coating due to the lower interaction with DMMP and smaller free-volume holes and lower relative fractional free volume. These results suggest that increasing the cross-link density is a reasonable approach to control the chemical resistance of polymer networks against OPs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。