N6-methyladenosine contributes to cellular phenotype in a genetically-defined model of breast cancer progression

N6-甲基腺苷在乳腺癌进展的基因定义模型中对细胞表型有贡献

阅读:8
作者:Nate J Fry, Brittany A Law, Olga R Ilkayeva, Kristen R Carraway, Christopher L Holley, Kyle D Mansfield

Abstract

The mRNA modification N6-methyladenosine (m6A) is involved in many post-transcriptional regulatory processes including mRNA stability and translational efficiency. However, it is also imperative to correlate these processes with phenotypic outputs during cancer progression. Here we report that m6A levels are significantly decreased in genetically-defined immortalized and oncogenically-transformed human mammary epithelial cells (HMECs), as compared with their primary cell predecessor. Furthermore, the m6A methyltransferase (METTL3) is decreased and the demethylase (ALKBH5) is increased in the immortalized and transformed cell lines, providing a possible mechanism for this basal change in m6A levels. Although the immortalized and transformed cells showed lower m6A levels than their primary parental cell line, overexpression of METTL3 and METTL14, or ALKBH5 knockdown to increase m6A levels in transformed cells increased proliferation and migration. Remarkably, these treatments had little effect on the immortalized cells. Together, these results suggest that m6A modification may be downregulated in immortalized cells as a brake against malignant progression. Finally, we found that m6A levels in the immortalized and transformed cells increased in response to hypoxia without corresponding changes in METTL3, METTL14 or ALKBH5 expression, suggesting a novel pathway for regulation of m6A levels under stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。