Massively parallel variant-to-function mapping determines functional regulatory variants of non-small cell lung cancer

大规模并行变体到功能映射确定非小细胞肺癌的功能调控变体

阅读:5
作者:Congcong Chen #, Yang Li #, Yayun Gu #, Qiqi Zhai #, Songwei Guo, Jun Xiang, Yuan Xie, Mingxing An, Chenmeijie Li, Na Qin, Yanan Shi, Liu Yang, Jun Zhou, Xianfeng Xu, Ziye Xu, Kai Wang, Meng Zhu, Yue Jiang, Yuanlin He, Jing Xu, Rong Yin, Liang Chen, Lin Xu, Juncheng Dai, Guangfu Jin, Zhibin Hu, Chen

Abstract

Genome-wide association studies have identified thousands of genetic variants associated with non-small cell lung cancer (NSCLC), however, it is still challenging to determine the causal variants and to improve disease risk prediction. Here, we applied massively parallel reporter assays to perform NSCLC variant-to-function mapping at scale. A total of 1249 candidate variants were evaluated, and 30 potential causal variants within 12 loci were identified. Accordingly, we proposed three genetic architectures underlying NSCLC susceptibility: multiple causal variants in a single haplotype block (e.g. 4q22.1), multiple causal variants in multiple haplotype blocks (e.g. 5p15.33), and a single causal variant (e.g. 20q11.23). We developed a modified polygenic risk score using the potential causal variants from Chinese populations, improving the performance of risk prediction in 450,821 Europeans from the UK Biobank. Our findings not only augment the understanding of the genetic architecture underlying NSCLC susceptibility but also provide strategy to advance NSCLC risk stratification.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。