Colorimetric aptasensor coupled with a deep-learning-powered smartphone app for programmed death ligand-1 expressing extracellular vesicles

比色适体传感器与深度学习智能手机应用程序相结合,用于检测表达程序性死亡配体-1 的细胞外囊泡

阅读:6
作者:Adeel Khan, Haroon Khan, Nongyue He, Zhiyang Li, Heba Khalil Alyahya, Yousef A Bin Jardan

Abstract

Lung cancer is a devastating public health threat and a leading cause of cancer-related deaths. Therefore, it is imperative to develop sophisticated techniques for the non-invasive detection of lung cancer. Extracellular vesicles expressing programmed death ligand-1 (PD-L1) markers (PD-L1@EVs) in the blood are reported to be indicative of lung cancer and response to immunotherapy. Our approach is the development of a colorimetric aptasensor by combining the rapid capturing efficiency of (Fe3O4)-SiO2-TiO2 for EV isolation with PD-L1 aptamer-triggered enzyme-linked hybridization chain reaction (HCR) for signal amplification. The numerous HRPs catalyze their substrate dopamine (colorless) into polydopamine (blackish brown). Change in chromaticity directly correlates with the concentration of PD-L1@EVs in the sample. The colorimetric aptasensor was able to detect PD-L1@EVs at concentrations as low as 3.6×102 EVs/mL with a wide linear range from 103 to 1010 EVs/mL with high specificity and successfully detected lung cancer patients' serum from healthy volunteers' serum. To transform the qualitative colorimetric approach into a quantitative operation, we developed an intelligent convolutional neural network (CNN)-powered quantitative analyzer for chromaticity in the form of a smartphone app named ExoP, thereby achieving the intelligent analysis of chromaticity with minimal user intervention or additional hardware attachments for the sensitive and specific quantification of PD-L1@EVs. This combined approach offers a simple, sensitive, and specific tool for lung cancer detection using PD-L1@EVs. The addition of a CNN-powered smartphone app further eliminates the need for specialized equipment, making the colorimetric aptasensor more accessible for low-resource settings.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。