TrkB Agonist (7,8-DHF)-Induced Responses in Dorsal Root Ganglia Neurons Are Decreased after Spinal Cord Injury: Implication for Peripheral Pain Mechanisms

脊髓损伤后,TrkB 激动剂 (7,8-DHF) 诱导的背根神经节神经元反应减弱:对外周疼痛机制的启示

阅读:7
作者:Kyeongran Jang, Sandra M Garraway

Abstract

Brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) are known to contribute to both protective and pronociceptive processes. However, their contribution to neuropathic pain after spinal cord injury (SCI) needs further investigation. In a recent study utilizing TrkBF616A mice, it was shown that systemic pharmacogenetic inhibition of TrkB signaling with 1NM-PP1 (1NMP) immediately after SCI delayed the onset of pain hypersensitivity, implicating maladaptive TrkB signaling in pain after SCI. To examine potential neural mechanisms underlying the behavioral outcome, patch-clamp recording was performed in small-diameter dissociated thoracic (T) dorsal root ganglia (DRG) neurons to evaluate TrkB signaling in uninjured mice and after T10 contusion SCI. Bath-applied 7,8-dihydroxyflavone (7,8-DHF), a selective TrkB agonist, induced a robust inward current in neurons from uninjured mice, which was attenuated by 1NMP treatment. SCI also decreased 7,8-DHF-induced current while increasing the latency to its peak amplitude. Western blot revealed a concomitant decrease in TrkB expression in DRGs adjacent to the spinal lesion. Analyses of cellular and membrane properties showed that SCI increased neuronal excitability, evident by an increase in resting membrane potential and the number of spiking neurons. However, SCI did not increase spontaneous firing in DRG neurons. These results suggest that SCI induced changes in TrkB activation in DRG neurons even though these alterations are likely not contributing to pain hypersensitivity by nociceptor hyperexcitability. Overall, this reveals complex interactions involving TrkB signaling and provides an opportunity to investigate other, presumably peripheral, mechanisms by which TrkB contributes to pain hypersensitivity after SCI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。