Tunable Charge Transport Using Heterocycles-Flanked Alkoxyphenanthrenes for High-Performing OFETs

利用杂环侧链烷氧基菲实现可调电荷传输,实现高性能 OFET

阅读:5
作者:Balu Balambiga, Panneerselvam Devibala, Predhanekar Mohamed Imran, Samuthira Nagarajan

Abstract

A series of new heterocycles-flanked alkoxyphenanthrenes with D'-D-D' and A-D-A architecture was synthesized for high-performance solution-processable p-channel, n-channel, and ambipolar organic field-effect transistors. The impact of electron-donating and -accepting abilities of the sulfur- and nitrogen-containing heteroaromatics on photophysical, electrochemical, and semiconducting properties was analyzed. The presence of heteroaryl rings improves the extended conjugation, two-dimensional lattices of π-π stacks, and increased molecular interaction of the functionalized phenanthrenes (PN) to allow better self-assembly. The electronically dynamic PN self-assembles into continuous microdomains, forming percolation channels for holes, electrons, or both reliant on functionalization. The low-lying LUMO levels of the compounds enabled ambipolar transport and reduced energy levels for charge injections. Spin-coated devices fabricated using functionalized PN with sulfur-containing heteroaryl substituted PN exhibited the highest hole mobility of 0.85 cm2/(V s) with 108 on/off current ratio. Compounds with A-D-A architecture showed n-channel/ambipolar charge transport, especially napthalimide acceptor substituted PN exhibited n-channel electron mobility of 0.78 cm2/(V s) and an on/off ratio of 106. X-ray diffraction and scanning electron microscopy studies further delineate the impact of efficient packing in the film. Quantum chemistry calculations combined with Marcus-Hush electron transfer theory interpret the transport parameters, and heteroatoms are established to impact the charge mobility intensely.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。