Targeting mixed lineage kinases in ER-positive breast cancer cells leads to G2/M cell cycle arrest and apoptosis

靶向 ER 阳性乳腺癌细胞中的混合谱系激酶可导致 G2/M 细胞周期停滞和细胞凋亡

阅读:5
作者:Limin Wang, Kathleen A Gallo, Susan E Conrad

Abstract

Estrogen receptor (ER)-positive tumors represent the most common type of breast cancer, and ER-targeted therapies such as antiestrogens and aromatase inhibitors have therefore been widely used in breast cancer treatment. While many patients have benefited from these therapies, both innate and acquired resistance continue to be causes of treatment failure. Novel targeted therapeutics that could be used alone or in combination with endocrine agents to treat resistant tumors or to prevent their development are therefore needed. In this report, we examined the effects of inhibiting mixed-lineage kinase (MLK) activity on ER-positive breast cancer cells and non-tumorigenic mammary epithelial cells. Inhibition of MLK activity with the pan-MLK inhibitor CEP-1347 blocked cell cycle progression in G2 and early M phase, and induced apoptosis in three ER-positive breast cancer cell lines, including one with acquired antiestrogen resistance. In contrast, it had no effect on the cell cycle or apoptosis in two non-tumorigenic mammary epithelial cell lines. CEP-1347 treatment did not decrease the level of active ERK or p38 in any of the cell lines tested. However, it resulted in decreased JNK and NF-κB activity in the breast cancer cell lines. A JNK inhibitor mimicked the effects of CEP-1347 in breast cancer cells, and overexpression of c-Jun rescued CEP-1347-induced Bax expression. These results indicate that proliferation and survival of ER-positive breast cancer cells are highly dependent on MLK activity, and suggest that MLK inhibitors may have therapeutic efficacy for ER-positive breast tumors, including ones that are resistant to current endocrine therapies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。