In Vivo Superresolution Imaging of Neuronal Structure in the Mouse Brain

小鼠脑神经结构的体内超分辨率成像

阅读:7
作者:Ben Ewell Urban, Lei Xiao, Siyu Chen, Huili Yang, Biqin Dong, Yevgenia Kozorovitskiy, Hao F Zhang

Conclusion

this study demonstrates a potentially useful technique for superresolution in vivo investigations in the rodent brain in deep tissue, creating a platform for investigating nanoscopic neuronal dynamics. Significance: this technique optimizes the combination of speed and depth for improved superresolution in vivo imaging in the rodent neocortex.

Methods

we combine the deep-tissue penetration and high imaging speed of resonant laser scanning two-photon (2P) microscopy with the superresolution ability of patterned excitation microscopy. Using high-frequency intensity modulation of the scanned two-photon excitation beam, we generate patterned illumination at the imaging plane. Using the principles of structured illumination, the high-frequency components in the collected images are then used to reconstruct images with an approximate twofold increase in optical resolution.

Objective

this study proposes and evaluates a technique for in vivo deep-tissue superresolution imaging in the light-scattering mouse brain at up to a 3.5 Hz 2-D imaging rate with a 21×21 μm2 field of view.

Results

using our technique, resonant 2P superresolution patterned excitation reconstruction microscopy, we demonstrate our ability to investigate nanoscopic neuronal architecture in the cerebral cortex of the mouse brain at a depth of 120 μm in vivo and 210 μm ex vivo with a resolution of 119 nm. This technique optimizes the combination of speed and depth for improved in vivo imaging in the rodent neocortex.

Significance

this technique optimizes the combination of speed and depth for improved superresolution in vivo imaging in the rodent neocortex.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。