Recapitulation of patient-specific 3D chromatin conformation using machine learning

使用机器学习重现患者特定的 3D 染色质构象

阅读:7
作者:Duo Xu, Andre Neil Forbes, Sandra Cohen, Ann Palladino, Tatiana Karadimitriou, Ekta Khurana

Abstract

Regulatory networks containing enhancer-gene edges define cellular states. Multiple efforts have revealed these networks for reference tissues and cell lines by integrating multi-omics data. However, the methods developed cannot be applied for large patient cohorts due to the infeasibility of chromatin immunoprecipitation sequencing (ChIP-seq) for limited biopsy material. We trained machine-learning models using chromatin interaction analysis with paired-end tag sequencing (ChIA-PET) and high-throughput chromosome conformation capture combined with chromatin immunoprecipitation (HiChIP) data that can predict connections using only assay for transposase-accessible chromatin using sequencing (ATAC-seq) and RNA-seq data as input, which can be generated from biopsies. Our method overcomes limitations of correlation-based approaches that cannot distinguish between distinct target genes of given enhancers or between active vs. poised states in different samples, a hallmark of network rewiring in cancer. Application of our model on 371 samples across 22 cancer types revealed 1,780 enhancer-gene connections for 602 cancer genes. Using CRISPR interference (CRISPRi), we validated enhancers predicted to regulate ESR1 in estrogen receptor (ER)+ breast cancer and A1CF in liver hepatocellular carcinoma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。