In-Vivo Quantitative Image Analysis of Age-Related Morphological Changes of C. elegans Neurons Reveals a Correlation between Neurite Bending and Novel Neurite Outgrowths

秀丽隐杆线虫神经元与年龄相关的形态变化的体内定量图像分析揭示了神经突弯曲与新神经突生长之间的相关性

阅读:10
作者:Max Hess, Alvaro Gomariz, Orcun Goksel, Collin Y Ewald

Abstract

The aging of the human brain in the absence of diseases is accompanied by subtle changes of neuronal morphology, such as dendrite restructuring, neuronal sprouting, and synaptic deteriorations, rather than neurodegeneration or gross deterioration. Similarly, the nervous system of Caenorhabditis elegans does not show neurodegeneration or gross deterioration during normal aging, but displays subtle alterations in neuronal morphology. The occurrence of these age-dependent abnormalities is stochastic and dynamic, which poses a major challenge to fully capture them for quantitative comparison. Here, we developed a semi-automated pipeline for quantitative image analysis of these features during aging. We employed and evaluated this pipeline herein to reproduce findings from previous studies using visual inspection of neuronal morphology. Importantly, our approach can also quantify additional features, such as soma volume, the length of neurite outgrowths, and their location along the aged neuron. We found that, during aging, the soma of neurons decreases in volume, whereas the number and length of neurite outgrowths from the soma both increase. Long-lived animals showed less decrease in soma volume, fewer and shorter neurite outgrowths, and protection against abnormal sharp bends preferentially localized at the distal part of the dendrites during aging. We found a correlation of sharp bends with neurite outgrowth, suggesting the hypothesis that sharp bends might proceed neurite outgrowths. Thus, our semi-automated pipeline can help researchers to obtain and analyze quantitative datasets of this stochastic process for comparison across genotypes and to identify correlations to facilitate the generation of novel hypothesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。