Comparison of Machine Learning Models on Performance of Single- and Dual-Type Electrochromic Devices

机器学习模型对单型和双型电致变色装置性能的比较

阅读:8
作者:Elif Ceren Gok, Murat Onur Yildirim, Esin Eren, Aysegul Uygun Oksuz

Abstract

This study shows that the model fitting based on machine learning (ML) from experimental data can successfully predict the electrochromic characteristics of single- and dual-type flexible electrochromic devices (ECDs) by using tungsten trioxide (WO3) and WO3/vanadium pentoxide (V2O5), respectively. Seven different regression methods were used for experimental observations, which belong to single and dual ECDs where 80% percent was used as training data and the remaining was taken as testing data. Among the seven different regression methods, K-nearest neighbor (KNN) achieves the best results with higher coefficient of determination (R 2) score and lower root-mean-squared error (RMSE) for the bleaching state of ECDs. Furthermore, higher R 2 score and lower RMSE for the coloration state of ECDs were achieved with Gaussian process regressor. The robustness result of the ML modeling demonstrates the reliability of prediction outcomes. These results can be proposed as promising models for different energy-saving flexible electronic systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。