Coronin-1 and calcium signaling governs sympathetic final target innervation

冠状蛋白-1和钙信号控制交感神经最终靶神经支配

阅读:4
作者:Dong Suo, Juyeon Park, Samuel Young, Takako Makita, Christopher D Deppmann

Abstract

Development of a functional peripheral nervous system requires axons to rapidly innervate and arborize into final target organs and then slow but not halt their growth to establish stable connections while keeping pace with organ growth. Here we examine the role of the NGF-TrkA effector protein, Coronin-1, on postganglionic sympathetic neuron final target innervation. In the absence of Coronin-1 we find that NGF-TrkA-PI3K signaling drives robust axon growth and branching in part by suppressing GSK3β. In contrast, the presence of Coronin-1 (wild-type neurons) suppresses but does not halt NGF-TrkA-dependent growth and branching. This relative suppression in axon growth behaviors is due to Coronin-1-dependent calcium release via PLC-γ1 signaling, which releases PI3K-dependent suppression of GSK3β. Finally, we demonstrate that Coro1a(-/-) mice display sympathetic axon overgrowth and overbranching phenotypes in the developing heart. Together with previous work demonstrating the Coronin-1 expression is NGF dependent, this work suggests that periods before and after NGF-TrkA-induced Coronin-1 expression (and likely other factors) defines two distinct axon growth states, which are critical for proper circuit formation in the sympathetic nervous system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。