Influence of the Molar Activity of 203/212Pb-PSC-PEG2-TOC on Somatostatin Receptor Type 2-Binding and Cell Uptake

203/212Pb-PSC-PEG2-TOC 摩尔活性对生长抑素受体 2 型结合和细胞摄取的影响

阅读:5
作者:Marc Pretze, Enrico Michler, Roswitha Runge, Kerstin Wetzig, Katja Tietze, Florian Brandt, Michael K Schultz, Jörg Kotzerke

Background

In neuroendocrine tumors (NETs), somatostatin receptor subtype 2 is highly expressed, which can be targeted by a radioactive ligand such as [177Lu]Lu-1,4,7,10-tetraazacyclododecane-N,N',N″,N‴,-tetraacetic acid-[Tyr3,Thr8]-octreotide (177Lu-DOTA-TOC) and, more recently, by a lead specific chelator (PSC) containing 203/212Pb-PSC-PEG2-TOC (PSC-TOC). The molar activity (AM) can play a crucial role in tumor uptake, especially in receptor-mediated uptake, such as in NETs. Therefore, an investigation of the influence of different molar activities of 203/212Pb-PSC-TOC on cell uptake was investigated. (2)

Conclusions

A moderate AM of 15-40 MBq/nmol showed the highest cell uptake. No uptake limitation was found in the first 24-48 h. Further escalation experiments with even higher AM should be performed in the future. It was shown that AM plays an important role because of its direct dependence on the cellular uptake levels, possibly due to less receptor saturation with non-radioactive ligands at higher AM.

Methods

Optimized radiolabeling of 203/212Pb-PSC-TOC was performed with 50 µg of precursor in a NaAc/AcOH buffer at pH 5.3-5.5 within 15-45 min at 95° C. Cell uptake was studied in AR42 J, HEK293 sst2, and ZR75-1 cells. (3)

Results

203/212Pb-PSC-TOC was radiolabeled with high radiochemical purity >95% and high radiochemical yield >95%, with AM ranging from 0.2 to 61.6 MBq/nmol. The cell uptake of 203Pb-PSC-TOC (AM = 38 MBq/nmol) was highest in AR42 J (17.9%), moderate in HEK293 sstr (9.1%) and lowest in ZR75-1 (0.6%). Cell uptake increased with the level of AM. (4) Conclusions: A moderate AM of 15-40 MBq/nmol showed the highest cell uptake. No uptake limitation was found in the first 24-48 h. Further escalation experiments with even higher AM should be performed in the future. It was shown that AM plays an important role because of its direct dependence on the cellular uptake levels, possibly due to less receptor saturation with non-radioactive ligands at higher AM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。