Activity-evoked capacitative Ca2+ entry: implications in synaptic plasticity

活动诱发的电容性 Ca2+ 进入:对突触可塑性的影响

阅读:3
作者:Atsushi Baba, Takuya Yasui, Shigeyoshi Fujisawa, Ryuji X Yamada, Maki K Yamada, Nobuyoshi Nishiyama, Norio Matsuki, Yuji Ikegaya

Abstract

The Ca2+ influx controlled by intracellular Ca2+ stores, called store-operated Ca2+ entry (SOC), occurs in various eukaryotic cells, but whether CNS neurons are endowed with SOC capability and how they may operate have been contentious issues. Using Ca2+ imaging, we present evidence for the presence of SOC in cultured hippocampal pyramidal neurons. Depletion of internal Ca2+ stores by thapsigargin caused intracellular Ca2+ elevation, which was prevented by SOC channel inhibitors 2-aminoethoxydiphenyl borate (2-APB), SKF96365, and La3+. Interestingly, these inhibitors also accelerated the decay of NMDA-induced Ca2+ transients without affecting their peak amplitude. In addition, SOC channel inhibitors attenuated tetanus-induced dendritic Ca2+ accumulation and long-term potentiation at Schaffer collateral-CA1 synapses in hippocampal slice preparations. These data suggest a novel link between ionotropic receptor-activated SOC and neuroplasticity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。