Resveratrol Exerts Dosage-Dependent Effects on the Self-Renewal and Neural Differentiation of hUC-MSCs

白藜芦醇对 hUC-MSCs 的自我更新和神经分化产生剂量依赖性影响

阅读:5
作者:Xinxin Wang, Shanshan Ma, Nan Meng, Ning Yao, Kun Zhang, Qinghua Li, Yanting Zhang, Qu Xing, Kang Han, Jishi Song, Bo Yang, Fangxia Guan

Abstract

Resveratrol (RES) plays a critical role in the fate of cells and longevity of animals via activation of the sirtuins1 (SIRT1) gene. In the present study, we intend to investigate whether RES could promote the self-renewal and neural-lineage differentiation in human umbilical cord derived MSCs (hUC-MSCs) in vitro at concentrations ranging from 0.1 to 10 μM, and whether it exerts the effects by modulating the SIRT1 signaling. Herein, we demonstrated that RES at the concentrations of 0.1, 1 and 2.5 μM could promote cell viability and proliferation, mitigate senescence and induce expression of SIRT1 and Proliferating Cell Nuclear Antigen (PCNA) while inhibit the expression of p53 and p16. However, the effects were reversed by 5 and 10 μM of RES. Furthermore, RES could promote neural differentiation in a dose-dependent manner as evidenced by morphological changes and expression of neural markers (Nestin, βIII-tubulin and NSE), as well as pro-neural transcription factors Neurogenin (Ngn)1, Ngn2 and Mash1. Taken together, RES exerts a dosage-dependent effect on the self-renewal and neural differentiation of hUC-MSCs via SIRT1 signaling. The current study provides a new strategy to regulate the fate of hUC-MSCs and suggests a more favorable in vitro cell culture conditions for hUC-MSCs-based therapies for some intractable neurological disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。