Redox state and mitochondrial respiratory chain function in skeletal muscle of LGMD2A patients

LGMD2A 患者骨骼肌的氧化还原状态和线粒体呼吸链功能

阅读:7
作者:Mats I Nilsson, Lauren G Macneil, Yu Kitaoka, Fatimah Alqarni, Rahul Suri, Mahmood Akhtar, Maria E Haikalis, Pavneet Dhaliwal, Munim Saeed, Mark A Tarnopolsky

Background

Calpain-3 deficiency causes oxidative and nitrosative stress-induced damage in skeletal muscle of LGMD2A patients, but mitochondrial respiratory chain function and anti-oxidant levels have not been systematically assessed in this clinical population previously.

Conclusions

Despite significant oxidative damage and redox imbalance in cytosolic/myofibrillar compartments, mitochondrial respiratory chain function is largely maintained in skeletal muscle of LGMD2A patients.

Methods

We identified 14 patients with phenotypes consistent with LGMD2A and performed CAPN3 gene sequencing, CAPN3 expression/autolysis measurements, and in silico predictions of pathogenicity. Oxidative damage, anti-oxidant capacity, and mitochondrial enzyme activities were determined in a subset of muscle biopsies.

Results

Twenty-one disease-causing variants were detected along the entire CAPN3 gene, five of which were novel (c.338 T>C, c.500 T>C, c.1525-1 G>T, c.2115+4 T>G, c.2366 T>A). Protein- and mRNA-based tests confirmed in silico predictions and the clinical diagnosis in 75% of patients. Reductions in antioxidant defense mechanisms (SOD-1 and NRF-2, but not SOD-2), coupled with increased lipid peroxidation and protein ubiquitination, were observed in calpain-3 deficient muscle, indicating a redox imbalance primarily affecting non-mitochondrial compartments. Although ATP synthase levels were significantly lower in LGMD2A patients, citrate synthase, cytochrome c oxidase, and complex I+III activities were not different from controls. Conclusions: Despite significant oxidative damage and redox imbalance in cytosolic/myofibrillar compartments, mitochondrial respiratory chain function is largely maintained in skeletal muscle of LGMD2A patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。