Electrocatalysis of Endosulfan Based on Fe3O4: An Experimental and Computational Approach

基于 Fe3O4 的硫丹电催化:实验和计算方法

阅读:6
作者:Gloria Uwaya, Njabulo Joyfull Gumede, Krishna Bisetty

Abstract

The present work reports the electrocatalytic oxidation of the organochlorine pesticide endosulfan (EDS) using iron oxide (Fe3O4) nanoparticles synthesized from Callistemon viminalis leaf extracts. As a sensor for EDS, Fe3O4 was combined with functionalized multiwalled carbon nanotubes (f-MWCNTs) on a glassy carbon electrode (GCE). Cyclic voltammetry, electrochemical impedance spectroscopy, and the differential pulse voltammetry experiment were conducted to investigate the electrochemistry of EDS on the GCE/f-MWCNT/Fe3O4 sensor. Based on optimized experimental conditions, the reports of analytical parameters show a limit of detection of 3.3 μM and an effective sensitivity of 0.06464 μA/μM over a range of concentrations from 0.1 to 20 μM. With the proposed method, we were able to demonstrate recoveries between 94 and 110% for EDS determinations in vegetables. Further, a series of computational modeling studies were carried out to better understand the EDS surface adsorption phenomenon on the GCE/f-MWCNT/Fe3O4 sensor. The highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energy gap (-5.18 eV) computed by density functional theory (DFT) supports the layer-by-layer electrode modification strategy's charge transfer and stability. Finally, transition state modeling was able to predict and confirm the mechanism of endosulfan oxidation.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。