A Novel Tin-Doped Titanium Oxide Nanocomposite for Efficient Photo-Anodic Water Splitting

一种新型锡掺杂氧化钛纳米复合材料,用于高效光阳极水分解

阅读:7
作者:Manzar Sohail, Nadeem Baig, Muhammad Sher, Rabia Jamil, Muhammad Altaf, Sultan Akhtar, Muhammad Sharif

Abstract

Herein, we report the expedient synthesis of new nanocomposite Sn0.39Ti0.61O2·TiO2 flakes using simple sol-gel and calcination methods. In order to prepare this material, first, we generated a polymeric gel using cost-effective and easily accessible precursors such as SnCl4, titanium isopropoxide, and tetrahydrofuran (THF). A small amount of triflic acid was used to initiate THF polymerization. The calcination of the resulting gel at 500 °C produced a Sn-Ti bimetallic nanocomposite. This newly synthesized Sn0.39Ti0.61O2·TiO2 was characterized by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV-visible spectroscopy. The photoelectrochemical (PEC) studies were performed for the first time using Sn0.39Ti0.61O2·TiO2 coated over fluorine-doped tin oxide (FTO) under simulated 1 sun solar radiation. The chronoamperometric study of the Sn0.39Ti0.61O2·TiO2/FTO revealed the repeatable and substantially higher photocurrent for the oxygen evolution reaction (OER) when compared to only TiO2. Moreover, the synthesized material exhibited high stability both in the presence and absence of light. The photocatalytic studies suggested that the sol-gel-synthesized Sn0.39Ti0.61O2·TiO2 can be efficiently used as a photoanode in the water-splitting reaction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。