Cleavage of disulfide bonds in mouse spermatogenic cell-specific type 1 hexokinase isozyme is associated with increased hexokinase activity and initiation of sperm motility

小鼠生精细胞特异性 1 型己糖激酶同工酶中二硫键的断裂与己糖激酶活性增加和精子活力启动有关

阅读:5
作者:Noriko Nakamura, Antonio Miranda-Vizuete, Kiyoshi Miki, Chisato Mori, Edward M Eddy

Abstract

During epididymal transit, sperm acquire the ability to initiate rapid forward progressive motility on release into the female reproductive tract or physiological media. Glycolysis is the primary source of the ATP necessary for this motility in the mouse, and several novel glycolytic enzymes have been identified that are localized to the principal piece region of the flagellum. One of these is the spermatogenic cell-specific type 1 hexokinase isozyme (HK1S), the only member of the hexokinase enzyme family detected in sperm. Hexokinase activity was found to be lower in immotile sperm immediately after removal from the cauda epididymis (quiescent) than in sperm incubated in physiological medium for 5 min and showing rapid forward progressive motility (activated). However, incubating sperm in medium containing diamide, an inhibitor of disulfide bond reduction, resulted in lower motility and HK activity than in controls. HK1S was present in dimer and monomer forms in extracts of quiescent sperm but mainly as a monomer in motile sperm. A dimer-size band detected in quiescent sperm with phosphotyrosine antibody was not detected in activated sperm, and the monomer-size band was enhanced. In addition, the general protein oxido-reductase thioredoxin-1 was able to catalyze the in vitro conversion of HK1S dimers to the monomeric form. These results strongly suggest that cleavage of disulfide bonds in HK1S dimers contributes to the increases in HK activity and motility that occur when mouse sperm become activated.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。