Development of Apomictic 56-Chromosomal Maize- Tripsacum Hybrids: A Potential Breakthrough in Heterosis Fixation

56 染色体玉米-三禾无融合生殖杂交种的开发:杂种优势固定的潜在突破

阅读:6
作者:Viktor Andreevich Sokolov, Pavel Alexandrovich Panikhin, Kirill Olegovich Plotnikov, Grigory Yurievich Chepurnov, Alexander Genadievich Blinov

Abstract

Maize (Zea mays L.) is one of the most demanded grain crops in the world. Currently, production has exceeded one billion tons and is increasing by 3-5% annually. Such growth is due to the genetic potential of the crop and the use of heterosis F1 hybrids in production. However, the need to produce first-generation seed annually poses significant challenges and is an economically costly technology. A solution to this problem may be the transfer of the asexual (apomictic) mode of reproduction to maize from its wild relative, eastern gamagrass (Tripsacum dactyloides L.). In this work, we report the production of 56-chromosome apomictic hybrids of maize (Zea mays L.) with eastern gamagrass (T. dactyloides L.) with restored anther fertility. The mode of reproduction of the plant was confirmed by counting chromosomes and sequencing the nuclear gene (Pox3) and chloroplast tRNA-Leu (trnL) gene. These apomictic hybrids had karyotypes of 2n = 56 = [(10Zm(573MB) + 36Td) + 10Zm(611CB)] and 2n = 56 = [(10Zm(611CB) + 36Td) + 10Zm(611CB)]. The resulting hybrids can be widely used as a fodder crop.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。