Phenotypic and functional profile of HIV-inhibitory CD8 T cells elicited by natural infection and heterologous prime/boost vaccination

自然感染和异源初免/加强疫苗接种引起的 HIV 抑制 CD8 T 细胞的表型和功能特征

阅读:10
作者:Stephanie A Freel, Laurie Lamoreaux, Pratip K Chattopadhyay, Kevin Saunders, David Zarkowsky, R Glenn Overman, Christina Ochsenbauer, Tara G Edmonds, John C Kappes, Coleen K Cunningham, Thomas N Denny, Kent J Weinhold, Guido Ferrari, Barton F Haynes, Richard A Koup, Barney S Graham, Mario Roederer, 

Abstract

Control of HIV-1 replication following nonsterilizing HIV-1 vaccination could be achieved by vaccine-elicited CD8(+) T-cell-mediated antiviral activity. To date, neither the functional nor the phenotypic profiles of CD8(+) T cells capable of this activity are clearly understood; consequently, little is known regarding the ability of vaccine strategies to elicit them. We used multiparameter flow cytometry and viable cell sorts from phenotypically defined CD8(+) T-cell subsets in combination with a highly standardized virus inhibition assay to evaluate CD8(+) T-cell-mediated inhibition of viral replication. Here we show that vaccination against HIV-1 Env and Gag-Pol by DNA priming followed by recombinant adenovirus type 5 (rAd5) boosting elicited CD8(+) T-cell-mediated antiviral activity against several viruses with either lab-adapted or transmitted virus envelopes. As it did for chronically infected virus controllers, this activity correlated with HIV-1-specific CD107a or macrophage inflammatory protein 1beta (MIP-1beta) expression from HIV-1-specific T cells. Moreover, for vaccinees or virus controllers, purified memory CD8(+) T cells from a wide range of differentiation stages were capable of significantly inhibiting virus replication. Our data define attributes of an antiviral CD8(+) T-cell response that may be optimized in the search for an efficacious HIV-1 vaccine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。