Designing Potent α-Glucosidase Inhibitors: A Synthesis and QSAR Modeling Approach for Biscoumarin Derivatives

设计有效的 α-葡萄糖苷酶抑制剂:双香豆素衍生物的合成和 QSAR 建模方法

阅读:6
作者:Thi-Hong-Truc Phan, Kowit Hengphasatporn, Yasuteru Shigeta, Wanting Xie, Phornphimon Maitarad, Thanyada Rungrotmongkol, Warinthorn Chavasiri

Abstract

Nineteen biscoumarins were synthesized, well-characterized, and evaluated against α-glucosidases in vitro. Of these, six compounds (10, 12, 16, and 17-19) were newly synthesized and not previously reported in the chemical literature. The majority of the synthesized derivatives demonstrated significant inhibitory activity. A quantitative structure-activity relationship (QSAR) model was developed, revealing a strong correlation between the anti-α-glucosidase activity and selected molecular descriptors. Based on this model, two new compounds (18 and 19) were designed, which exhibited the strongest inhibition with IC50 values of 0.62 and 1.21 μM, respectively, when compared to the positive control (acarbose) with an IC50 value of 93.63 μM. Enzyme kinetic studies of compounds 18 and 19 revealed their competitive inhibition with Ki values of 3.93 and 1.80 μM, respectively. Computational studies demonstrated that compound 18 could be inserted into the original binding site (OBS) of α-glucosidase MAL12 and form multiple hydrophobic interactions with nearby amino acids, with the bromo group playing an essential role in enhancing the binding strength and stability at the OBS of the enzyme based on the quantum mechanical calculations using the fragment molecular orbital method. These findings provide valuable insights into the design of potent α-glucosidase inhibitors, which may have potential therapeutic applications in the treatment of diabetes and related diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。