Porcine mesothelium matrix as a biomaterial for wound healing applications

猪间皮基质作为伤口愈合应用的生物材料

阅读:4
作者:H Capella-Monsonís, M A Tilbury, J G Wall, D I Zeugolis

Abstract

The increasing economic burden of wound healing in healthcare systems requires the development of functional therapies. Xenografts with preserved extracellular matrix (ECM) structure and biofunctional components overcome major limitations of autografts and allografts (e.g. availability) and artificial biomaterials (e.g. foreign body response). Although porcine mesothelium is extensively used in clinical practice, it is under-investigated for wound healing applications. Herein, we compared the biochemical and biological properties of the only two commercially available porcine mesothelium grafts (Meso Biomatrix® and Puracol® Ultra ECM) to traditionally used wound healing grafts (Endoform™, ovine forestomach and MatriStem®, porcine urinary bladder) and biomaterials (Promogran™, collagen/oxidized regenerated cellulose). The Endoform™ and the Puracol® Ultra ECM showed the highest (p<0.05) soluble collagen and elastin content. The MatriStem® had the highest (p<0.05) basic fibroblast growth factor (FGFb) content, whereas the Meso Biomatrix® had the highest (p<0.05) transforming growth factor beta-1 (TGF-β1) and vascular endothelial growth factor (VEGF) content. All materials showed tissue-specific structure and composition. The Endoform™ and the Meso Biomatrix® had some nuclei residual matter. All tissue grafts showed similar (p>0.05) response to enzymatic degradation, whereas the Promogran™ was not completely degraded by matrix metalloproteinase (MMP)-8 and was completely degraded by elastase. The Promogran™ showed the highest (p<0.05) permeability to bacterial infiltration. The Promogran™ showed by far the lowest dermal fibroblast and THP-1 attachment and growth. All tested materials showed significantly lower (p<0.05) tumor necrosis factor-alpha (TNF-α) expression than the lipopolysaccharides group. The MatriStem® and the Puracol® Ultra ECM promoted the highest (p<0.05) number of micro-vessel formation, whereas the Promogran™ the lowest (p<0.05). Collectively, these data confer that porcine mesothelium has the potential to be used as a wound healing material, considering its composition, resistance to enzymatic degradation, cytocompatibility, and angiogenic potential.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。