Heat stress induces intestinal injury through lysosome- and mitochondria-dependent pathway in vivo and in vitro

热应激通过溶酶体和线粒体依赖性途径在体内和体外诱导肠道损伤

阅读:4
作者:Gao Yi, Li Li, Meijuan Luo, Xuan He, Zhimin Zou, Zhengtao Gu, Lei Su

Abstract

Damage to the small intestine secondary to heat stroke is a major factor in heat stroke-related morbidity and mortality. However, the underlying mechanisms by which heat stroke causes small intestinal lesions and dysfunction remain unclear. To explore the pathogenesis of small intestinal tissue and epithelial cell injury, the SW480 cell heat stress model and the mice heat stroke model were established to mimic heat stroke. Morphologic changes in intestinal tissue and increased TUNEL-positive index were induced by heat stress in vivo. Heat stress activated the lysosomal-mitochondrial apoptotic pathway in SW480 cells, increasing intracellular reactive oxygen species and causing lysosomal membrane permeabilization with subsequent release of cathepsin B to the cytosol, mitochondrial depolarization, and cytochrome C release to cytosol. An increase in the Bax/Bcl2 ratio, caspase-9 and caspase-3 were observed. N-Acetyl-L-Cysteine was shown to inhibit ROS generation, suppress permeabilization of lysosomal membranes, decrease levels of cathepsin B and cytochrome C in the cytosol, and inhibit Bax/Bcl2 ratio, caspase-9 and caspase-3 activity both in vitro and in vivo. Mitochondrial damage was alleviated when the models were pre-treated with CA-074 Me both in vitro and in vivo, decreasing cathepsin B and cytochrome C levels in the cytosol, Bax/Bcl2 ratio, caspase-9 and caspase-3 activity. In our models, heat stress-induced apoptosis of small intestinal tissue and epithelial cells through accumulation of ROS and activation of the lysosomal-mitochondrial apoptotic pathway involved the release of cathepsin B. These findings may offer potentially pharmaceutical targets and strategies to repair intestinal injury caused by heat stroke.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。