Results
A Boolean model has been compiled from time-resolved transcriptome data and literature mining, incorporating the main pathways involved in migration from initial stimulation to phenotype progress. Steady-state analysis under different inhibition and stimulation conditions of known key molecules reproduces existing data and predicts novel interactions based on our own experiments. Model simulations highlight for the first time the necessity of a temporal sequence of initial, transient MET receptor (met proto-oncogene, hepatocyte growth factor receptor) and subsequent, continuous epidermal growth factor/integrin signalling to trigger and sustain migration by autocrine signalling that is integrated through the Focal adhesion kinase protein. We predicted in silico and verified in vitro that long-term cell migration is stopped if any of the two feedback loops are inhibited. Availability: The network file for analysis with the R BoolNet library is available in the
Supplementary Information
Supplementary data are available at Bioinformatics online.
