Sequential activation of multiple grounding pads reduces skin heating during radiofrequency tumor ablation

多个接地垫的顺序激活可减少射频肿瘤消融期间的皮肤加热

阅读:6
作者:Dieter Haemmerich, David James Schutt

Conclusion

Sequential activation of multiple ground pads resulted in reduced maximum tissue temperature. This may reduce the incidence of ground pad burns and may allow higher power RF generators.

Methods

We compared conventional operation (i.e. simultaneous connection of all pads) to sequentially switched activation of the pads where different pad combinations are active for periods of approximately 0.3 - 8 s. The timing during sequential activation was adjusted to keep the leading edge temperature equal between the pads. We created Finite Element Method computer models of three pads (5 x 5 cm, 1 cm apart) placed in line with the RF electrode on a human thigh to determine differences in tissue heating during simultaneous and sequential ground pad activation. We performed experiments with three ground pads (5 x 10 cm, 4 cm apart) placed on a tissue phantom (1.5 A, 12 min) and measured pad surface and leading edge temperatures.

Purpose

Radiofrequency (RF) tumor ablation has become an accepted treatment modality for tumors not amenable to surgery. Skin burns due to ground pad heating may become a limiting factor for further increase in ablation zone dimensions and generator power. We investigated a method were groups of ground pads are sequentially activated to reduce skin heating.

Results

Temperature rise below the leading edge for proximal, middle and distal ground pad in relation to active electrode location was 5.9 degrees C +/- 0.1 degrees C, 0.8 degrees C +/- 0.1 degrees C and 0.3 degrees C +/- 0.1 degrees C for conventional operation, and 3.3 degrees C +/- 0.1 degrees C, 3.4 degrees C +/- 0.2 degrees C and 3.4 degrees C +/- 0.2 degrees C for sequentially activated operation in the experiments (p < 0.001).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。