Anti-Cancer Effects of an Optimised Combination of Ginsenoside Rg3 Epimers on Triple Negative Breast Cancer Models

人参皂苷 Rg3 差向异构体优化组合对三阴性乳腺癌模型的抗癌作用

阅读:8
作者:Maryam Nakhjavani, Eric Smith, Helen M Palethorpe, Yoko Tomita, Kenny Yeo, Tim J Price, Amanda R Townsend, Jennifer E Hardingham

Abstract

Key problems of chemotherapies, as the mainstay of treatment for triple-negative breast cancer (TNBC), are toxicity and development of tumour resistance. Using response surface methodology, we previously optimised the combination of epimers of ginsenoside Rg3 (Rg3) for anti-angiogenic action. Here, we show that the optimised combination of 50 µM SRg3 and 25 µM RRg3 (C3), derived from an RSM model of migration of TNBC cell line MDA-MB-231, inhibited migration of MDA-MB-231 and HCC1143, in 2D and 3D migration assays (p < 0.0001). C3 inhibited mammosphere formation efficiency in both cell lines and decreased the CD44+ stem cell marker in the mammospheres. Molecular docking predicted that Rg3 epimers had a better binding score with IGF-1R than with EGFR, HER-2 or PDGFR, and predicted an mTOR inhibitory function of Rg3. C3 affected the signalling of AKT in MDA-MB-231 and HCC1143 mammospheres. In a mouse model of metastatic TNBC, an equivalent dose of C3 (23 mg/kg SRg3 + 11 mg/kg RRg3) or an escalated dose of 46 mg/kg SRg3 + 23 mg/kg RRg3 was administered to NSG mice bearing MDA-MB-231-Luc cells. Calliper and IVIS spectrum measurement of the primary and secondary tumour showed that the treatment shrunk the primary tumour and decreased the load of metastasis in mice. In conclusion, this combination of Rg3 epimers showed promising results as a potential treatment option for TNBC patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。