Coregulation of voltage-dependent kinetics of Na(+) and K(+) currents in electric organ

电器官中Na+和K+电流电压依赖性动力学的共调节

阅读:8
作者:M L McAnelly, H H Zakon

Abstract

The electric organ cells of Sternopygus generate action potentials whose durations vary over a fourfold range. This variation in action potential duration is the basis for individual variation in a communication signal. Thus, action potential duration must be precisely regulated in these cells. We had observed previously that the inactivation kinetics of the electrocyte Na(+) current show systematic individual variation. In this study, using a two-electrode voltage clamp, we found that the voltage-dependent activation and deactivation kinetics of the delayed rectifying K(+) current in these cells covary in a graded and predictable manner across fish. Furthermore, when Na(+) and K(+) currents were recorded in the same cell, their voltage-dependent kinetics were highly correlated. This finding illustrates an unprecedented degree of coregulation of voltage-dependent properties in two molecularly distinct ionic channels. Such a coregulation of ionic channels is uniquely observable in a cell specialized to generate individual differences in electrical activity and in which the results of biophysical control mechanisms are evident in behaving animals. We propose that the precise coregulation of the voltage-dependent kinetics of multiple ionic currents may be a general mechanism for regulation of membrane excitability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。