Biofunctionalization of Microgroove Surfaces with Antibacterial Nanocoatings

利用抗菌纳米涂层对微槽表面进行生物功能化

阅读:6
作者:Yingzhen Lai, Zhiqiang Xu, Jiang Chen, Renbin Zhou, Jumei Tian, Yihuang Cai

Conclusion

Nano-Ag coating resulted in good antimicrobial activity; however, the biocompatibility was questionable. TiN nanocoating on an MG surface showed antibacterial properties with an optimal biocompatibility and maintained the "contact guidance" effects for HGFs.

Methods

The titanium nitride (TiN) and silver (Ag) coatings were deposited onto the smooth and MG surfaces using magnetron sputtering. A smooth titanium surface (Ti-S) was used as the control. The physicochemical properties including surface morphology, roughness, and hydrophilicity were characterized using scanning electron microscopy, atomic force microscopy, and an optical contact angle analyzer. The "contact guidance" morphology was assessed using confocal laser scanning microscopy. Cell proliferation was analyzed using the Cell Counting Kit-8 assay. The expression level of the main focal adhesion-related structural protein vinculin was compared using quantitative reverse transcription PCR and Western blotting. The antibacterial activity against P. gingivalis was evaluated using the LIVE/DEAD BacLight™ Bacterial Viability Kit.

Results

The Ag and TiN antibacterial nanocoatings were successfully deposited onto the smooth and MG surfaces using magnetron sputtering technology. TiN coating on a grooved surface (TiN-MG) resulted in less nanoroughness and greater surface hydrophilicity than Ag coating on a smooth surface (Ag-S), which was more hydrophobic. Cell proliferation and expression of vinculin were higher on the TiN-MG surface than on the Ag-coated surfaces. Ag-coated surfaces showed the strongest antibacterial activity, followed by TiN-coated surfaces.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。