The dopamine D3 receptor is part of a homeostatic pathway regulating ethanol consumption

多巴胺 D3 受体是调节乙醇消耗的稳态通路的一部分

阅读:4
作者:Jerome Jeanblanc, Dao-Yao He, Nancy N H McGough, Marian L Logrip, Khanhky Phamluong, Patricia H Janak, Dorit Ron

Abstract

We recently identified a homeostatic pathway that inhibits ethanol intake. This protective pathway consists of the scaffolding protein RACK1 and brain-derived neurotrophic factor (BDNF). RACK1 translocates to the nucleus after exposure of neurons to ethanol and increases expression of BDNF (McGough et al., 2004). We also found that increasing the levels of BDNF via systemic administration of RACK1 expressed as a Tat-fusion protein (Tat-RACK1) reduces ethanol consumption, whereas reduction of BDNF levels augments this behavior (McGough et al., 2004). Based on these results, we hypothesized that activation of the BDNF receptor TrkB is necessary for the effects of BDNF on ethanol intake and that gene products downstream of BDNF negatively regulate ethanol consumption. Here, we show that inhibition of the BDNF receptor TrkB increases voluntary ethanol consumption in wild-type mice but not in mice lacking one copy of the BDNF gene (BDNF(+/-)). We also find that increases in the levels of BDNF, mediated by ethanol or RACK1, lead to increased dorsal striatal levels of the dopamine D3 receptor (D3R), a gene downstream of BDNF, via activation of the TrkB receptor. Finally, we show that the Tat-RACK1-mediated reduction of ethanol consumption is attenuated by coinjection with either the Trk inhibitor K252a or the dopamine D3R-prefering antagonist U-99194A [5, 6-dimethoxy-2-(di-n-propylamino)indan], suggesting that activation of the BDNF pathway via RACK1 leads to increased expression of the dopamine D3R, which in turn mediates the attenuation of ethanol consumption.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。