Hippocampal c-Jun-N-terminal kinases serve as negative regulators of associative learning

海马 c-Jun-N 末端激酶作为联想学习的负调节剂

阅读:6
作者:Tessi Sherrin, Thomas Blank, Cathrin Hippel, Martin Rayner, Roger J Davis, Cedomir Todorovic

Abstract

In the adult mouse, signaling through c-Jun N-terminal kinases (JNKs) links exposure to acute stress to various physiological responses. Inflammatory cytokines, brain injury and ischemic insult, or exposure to psychological acute stressors induce activation of hippocampal JNKs. Here we report that exposure to acute stress caused activation of JNKs in the hippocampal CA1 and CA3 subfields, and impaired contextual fear conditioning. Conversely, intrahippocampal injection of JNKs inhibitors sp600125 (30 μm) or D-JNKI1 (8 μm) reduced activity of hippocampal JNKs and rescued stress-induced deficits in contextual fear. In addition, intrahippocampal administration of anisomycin (100 μg/μl), a potent JNKs activator, mimicked memory-impairing effects of stress on contextual fear. This anisomycin-induced amnesia was abolished after cotreatment with JNKs selective inhibitor sp600125 without affecting anisomycin's ability to effectively inhibit protein synthesis as measured by c-Fos immunoreactivity. We also demonstrated milder and transient activation of the JNKs pathway in the CA1 subfield of the hippocampus during contextual fear conditioning and an enhancement of contextual fear after pharmacological inhibition of JNKs under baseline conditions. Finally, using combined biochemical and transgenic approaches with mutant mice lacking different members of the JNK family (Jnk1, Jnk2, and Jnk3), we provided evidence that JNK2 and JNK3 are critically involved in stress-induced deficit of contextual fear, while JNK1 mainly regulates baseline learning in this behavioral task. Together, these results support the possibility that hippocampal JNKs serve as a critical molecular regulator in the formation of contextual fear.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。