Quantitative Proteomic Analyses To Reveal the Key Features of Proteins in New Onset Ankylosing Spondylitis Patients

定量蛋白质组学分析揭示新发强直性脊柱炎患者蛋白质的关键特征

阅读:4
作者:Yong-Ping Lu, Xiao-Li Zhang, Fengping Zheng, Chen Yun, Chengxin Zhu, Wanxia Cai, Dongzhou Liu, Xiaoping Hong, Qiang Li, Bo Hu, Donge Tang, Liang-Hong Yin, Yong Dai

Abstract

Ankylosing spondylitis (AS) is a chronic immune-mediated disease. Various immune cells play an essential role in the AS pathogenesis. However, the specific pathogenesis of AS has not been well understood. Proteomic profiles of peripheral blood mononuclear cells (PBMCs) were applied to reveal the specific pathogenesis of AS. Quantitative proteomic analyses were performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based methods to investigate the protein profiling of PBMCs from new-onset AS patients (n = 9) and healthy controls (n = 9). We identified 782 differentially expressed proteins (DEPs) and 527 differentially phosphorylated proteins (DPPs) between AS patients and healthy controls. The subcellular location of DEPs and DPPs showed that most of the DEPs were from the cytoplasm (n = 296, 38%), were extracellular (n = 141, 18%), and from the nucleus (n = 114, 15%); most of the DPPs were from the cytoplasm (n = 37, 34%), nucleus (n = 35, 32%), and plasma membrane (n = 10, 9%). We further identified 89 proteins with both expression and phosphorylation differences. The functional annotation of the 89 differentially expressed and phosphorylated proteins enriched in the antigen processing and presentation pathway. Four DEPs with six phosphorylated positions were found in the antigen processing and presentation pathway. The differentially expressed and phosphorylated proteins may be helpful to uncover the pathogenesis of AS. The six AS-specific proteins may serve as candidate markers for AS diagnosis and new treatment targets.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。