Polybenzoxazine Resins with Polyphosphazene Microspheres: Synthesis, Flame Retardancy, Mechanisms, and Applications

含聚磷腈微球的聚苯并恶嗪树脂:合成、阻燃性、机理及应用

阅读:6
作者:Ling Zhao, Chunxia Zhao, Changyuan Guo, Yuntao Li, Shuliang Li, Luyi Sun, Hui Li, Dong Xiang

Abstract

Polyphosphazene microspheres were fabricated by ultrasonic-assisted precipitation polymerization using 4,4'-(hexafluoroisopropylidene)diphenol, 4,4'-sulfonyldiphenol, 4,4-(9-fluorenylidene)diphenol, and phenolphthalein to obtain poly[4,4'-(hexafluoroisopropylidene)diphenol]phosphazene (PZAF), poly(4,4'- sulfonyldiphenol)phosphazene (PZS), poly[4,4'-(9-fluorenylidene)diphenol]phosphazene, and poly(phenolphthalein)phosphazene (PZPT) and were incorporated into polybenzoxazines (PBa) to obtain corresponding PZAF/PBa, PZS/PBa, fluorenyl polyphosphazene (PZFP)/PBa, and PZPT/PBa composites. Addition of 5 wt % of PZAF, PZS, PZFP, and PZPT microspheres improved the thermal stability and fire retardancy of PBa resin significantly. Notably, addition of PBa with 5% PZAF led to a 62.5% decrease in the peak heat release rate and 49.3% reduction in total heat release. The role of microspheres in the gas-phase flame-retardancy mechanism in the PBa matrix was studied. Dynamic mechanical analysis results demonstrated that the T g of PBa flame-retardant composites was still around 210 °C compared to 221 °C of pure PBa. Hence, the synthesized PBa composites had potential applications as high flame-retardancy materials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。