Distance-Matched Tagging Sequence Optimizes Live-Cell Protein Labeling by a Biarsenical Fluorescent Reagent AsCy3_E

距离匹配标记序列优化双砷荧光试剂 AsCy3_E 的活细胞蛋白标记

阅读:10
作者:Karen A Hecht, Yijia Xiong, Daniel A Barrack, Nicole R Ford, Guritno Roesijadi, Thomas C Squier

Abstract

Cell permeable biarsenical fluorescent dyes built around a cyanine scaffold (AsCy3) create the ability to monitor the structural dynamics of tagged proteins in living cells. To extend the capability of this photostable and bright biarsenical probe to site-specifically label cellular proteins, we have compared the ability of AsCy3 to label two different tagging sequences (i.e., CCKAEAACC and CCKAEAAKAEAAKCC), which were separately engineered onto enhanced green fluorescent proteins (EGFPs) and expressed in Escherichia coli. The cysteine pairs within the shorter protein tag (i.e., Cy3TAG) are designed to specifically match the 14.5 Å interarsenic atomic separation within AsCy3, whereas the longer protein tag (Cy3TAG+6) was identified using a peptide screening approach and reported to enhance the binding affinity and brightness. We report that AsCy3 binds both the tagged proteins with similar high affinities (Kd < 1 μM) under both in vivo labeling conditions and following isolation and labeling of the tagged EGFP protein. Greater experimental reproducibility and substantially larger AsCy3 labeling stoichiometries are observed under in vivo conditions using the shorter Cy3TAG in comparison to the Cy3TAG+6. These results suggest that the use of the distance-matched and conformationally restricted Cy3TAG avoids nonspecific protein interactions, thereby enabling routine measurements of protein localization and conformational dynamics in living cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。