Acetylcholine from Visual Circuits Modulates the Activity of Arousal Neurons in Drosophila

视觉回路中的乙酰胆碱调节果蝇唤醒神经元的活动

阅读:5
作者:Nara I Muraro, M Fernanda Ceriani

Abstract

Drosophila melanogaster's large lateral ventral neurons (lLNvs) are part of both the circadian and sleep-arousal neuronal circuits. In the past, electrophysiological analysis revealed that lLNvs fire action potentials (APs) in bursting or tonic modes and that the proportion of neurons firing in those specific patterns varies circadianly. Here, we provide evidence that lLNvs fire in bursts both during the day and at night and that the frequency of bursting is what is modulated in a circadian fashion. Moreover, we show that lLNvs AP firing is not only under cell autonomous control, but is also modulated by the network, and in the process we develop a novel preparation to assess this. We demonstrate that lLNv bursting mode relies on a cholinergic input because application of nicotinic acetylcholine receptor antagonists impairs this firing pattern. Finally, we found that bursting of lLNvs depends on an input from visual circuits that includes the cholinergic L2 monopolar neurons from the lamina. Our work sheds light on the physiological properties of lLNvs and on a neuronal circuit that may provide visual information to these important arousal neurons. Significance statement: Circadian rhythms are important for organisms to be able to anticipate daily changes in environmental conditions to adjust physiology and behavior accordingly. These rhythms depend on an endogenous mechanism that operates in dedicated neurons. In the fruit fly, the large lateral ventral neurons (lLNvs) are part of both the circadian and sleep-arousal neuronal circuits. Here, we provide new details about the firing properties of these neurons and demonstrate that they depend, not only on cell-autonomous mechanisms, but also on a specific neurotransmitter derived from visual circuits. Our work sheds light on the physiological properties of lLNvs and on a neuronal circuit that may provide visual information to these important arousal neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。