Identification of hyaluronidase and phospholipase B in Lachesis muta rhombeata venom

菱斑蛇毒中透明质酸酶和磷脂酶B的鉴定

阅读:4
作者:Gisele A Wiezel, Patty K dos Santos, Francielle A Cordeiro, Karla C F Bordon, Heloisa S Selistre-de-Araújo, Beatrix Ueberheide, Eliane C Arantes

Abstract

Hyaluronidases contribute to local and systemic damages after envenoming, since they act as spreading factors cleaving the hyaluronan presents in the connective tissues of the victim, facilitating the diffusion of venom components. Although hyaluronidases are ubiquitous in snake venoms, they still have not been detected in transcriptomic analysis of the Lachesis venom gland and neither in the proteome of its venom performed previously. This work purified a hyaluronidase from Lachesis muta rhombeata venom whose molecular mass was estimated by SDS-PAGE to be 60 kDa. The hyaluronidase was more active at pH 6 and 37 °C when salt concentration was kept constant and more active in the presence of 0.15 M monovalent ions when the pH was kept at 6. Venom was fractionated by reversed-phase liquid chromatography (RPLC). Edman sequencing after RPLC failed to detect hyaluronidase, but identified a new serine proteinase isoform. The hyaluronidase was identified by mass spectrometry analysis of the protein bands in SDS-PAGE. Additionally, phospholipase B was identified for the first time in Lachesis genus venom. The discovery of new bioactive molecules might contribute to the design of novel drugs and biotechnology products as well as to development of more effective treatments against the envenoming.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。