Particle shape does not affect ingestion and egestion of microplastics by the freshwater shrimp Neocaridina palmata

颗粒形状不会影响淡水虾 Neocaridina palmata 对微塑料的摄入和排泄

阅读:4
作者:Kristina Klein #, Sebastian Heß #, Sandra Nungeß, Ulrike Schulte-Oehlmann, Jörg Oehlmann

Abstract

The ingestion of microplastics (MPs) is well documented for various animals and spherical MPs (beads) in many studies. However, the retention time and egestion of MPs have been examined less, especially for irregular MPs (fragments) which are predominantly found in the environment. Furthermore, the accumulation of such particles in the gastrointestinal tract is likely to determine whether adverse effects are induced. To address this, we investigated if the ingestion and egestion of beads are different to those of fragments in the freshwater shrimp Neocaridina palmata. Therefore, organisms were exposed to 20-20,000 particles L-1 of either polyethylene (PE) beads (41 μm and 87 μm) or polyvinyl chloride (PVC) fragments (<63 μm). Moreover, shrimps were exposed to 20,000 particles L-1 of either 41 μm PE and 11 μm polystyrene (PS) beads or the PVC fragments for 24 h, followed by a post-exposure period of 4 h to analyze the excretion of particles. To simulate natural conditions, an additional fragment ingestion study was performed in the presence of food. After each treatment, the shrimps were analyzed for retained or excreted particles. Our results demonstrate that the ingestion of beads and fragments were concentration-dependent. Shrimps egested 59% of beads and 18% of fragments within 4 h. Particle shape did not significantly affect MP ingestion or egestion, but size was a relevant factor. Medium- and small-sized beads were frequently ingested. Furthermore, fragment uptake decreased slightly when co-exposed to food, but was not significantly different to the treatments without food. Finally, the investigations highlight that the assessment of ingestion and egestion rates can help to clarify whether MPs remain in specific organisms and, thereby, become a potential health threat.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。