Effect of Polyethylene Film Thickness on the Antimicrobial Activity of Embedded Zinc Oxide Nanoparticles

聚乙烯薄膜厚度对嵌入氧化锌纳米粒子抗菌活性的影响

阅读:8
作者:Mahdi Darvish, Abdellah Ajji

Abstract

Microbial contamination of most foods occurs primarily at the surface during postprocessing and handling; therefore, preventing cross-contamination by incorporation of antimicrobial substances in contact with the surface of the product is an efficient strategy in reducing food contamination risks. Zinc oxide nanoparticles (ZnONPs) have been used widely to achieve antimicrobial films in various applications including the food industry. This work describes the fabrication of antimicrobial polymeric films containing ZnONPs produced by the coextrusion and dip-coating techniques. Effects of skin layer thicknesses containing ZnONPs on the antimicrobial effectiveness of the film by their capability to inactivate Gram-positive and Gram-negative bacteria were studied for both methods. The antimicrobial properties of the coextruded multilayer LLDPE/ZnONP nanocomposite films evidenced antimicrobial activity in the range 0.5-1.5 log reductions, while in the case of a sandblasted multilayer film, it showed high antimicrobial properties as around 99.99%. The optical properties of coextruded multilayer films were measured and discussed. Furthermore, to achieve a thinner LLDPE thickness, ZnONPs were coated with different concentrations of LLDPE solution by the dip-coating method. TEM confirmed that a homogeneous layer is formed on the surface of ZnONPs. The thickness of the LLDPE layer estimated by TEM was about 2 nm and film produced 3 log and 4 log reductions for E. coli and S. aureus, respectively. The results show that developed films have the potential to be used as food packaging films and can extend shelf life, maintain quality, and assure the safety of food. The antimicrobial mechanisms of ZnONPs were also investigated. It was found that direct contact of particles with products is necessary to assure high antibacterial activity of the films.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。