PLZF(+) Innate T Cells Support the TGF-β-Dependent Generation of Activated/Memory-Like Regulatory T Cells

PLZF(+) 先天性 T 细胞支持 TGF-β 依赖性活化/记忆样调节性 T 细胞的生成

阅读:5
作者:Byung Hyun Kang, Hyo Jin Park, Hi Jung Park, Jae-Ii Lee, Seong Hoe Park, Kyeong Cheon Jung

Abstract

PLZF-expressing invariant natural killer T cells and CD4 T cells are unique subsets of innate T cells. Both are selected via thymocyte-thymocyte interaction, and they contribute to the generation of activated/memory-like CD4 and CD8 T cells in the thymus via the production of IL-4. Here, we investigated whether PLZF(+) innate T cells also affect the development and function of Foxp3(+) regulatory CD4 T cells. Flow cytometry analysis of the thymus and spleen from both CIITA transgenic C57BL/6 and wild-type BALB/c mice, which have abundant PLZF(+) CD4 T cells and invariant natural killer T cells, respectively, revealed that Foxp3(+) T cells in these mice exhibited a CD103(+) activated/memory-like phenotype. The frequency of CD103(+) regulatory T cells was considerably decreased in PLZF(+) cell-deficient CIITA(Tg)Plzf(lu/lu) and BALB/c.CD1d(-/-) mice as well as in an IL-4-deficient background, such as in CIITA(Tg)IL-4(-/-) and BALB/c.lL-4(-/-) mice, indicating that the acquisition of an activated/memory-like phenotype was dependent on PLZF(+) innate T cells and IL-4. Using fetal thymic organ culture, we further demonstrated that IL-4 in concert with TGF-β enhanced the acquisition of the activated/memory-like phenotype of regulatory T cells. In functional aspects, the activated/memory-like phenotype of Treg cells was directly related to their suppressive function; regulatory T cells of CIITA(Tg)PIV(-/-) mice more efficiently suppressed ovalbumin-induced allergic airway inflammation compared with their counterparts from wild-type mice. All of these findings suggest that PLZF(+) innate T cells also augmented the generation of activated/memory-like regulation via IL-4 production.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。