Anti-diabetic Activity of Brucine in Streptozotocin-Induced Rats: In Silico, In Vitro, and In Vivo Studies

马钱子碱对链脲佐菌素诱发大鼠的抗糖尿病活性:计算机模拟、体外和体内研究

阅读:5
作者:Naimat Ullah Khan, Neelum Gul Qazi, Arif-Ullah Khan, Fawad Ali, Syed Shams Ul Hassan, Simona Bungau

Abstract

Diabetes mellitus (DM) is a complex and multiple group of disorders, and understanding the molecular mechanisms is a key role in identifying various markers involved in the diagnosis of the disease. Brucine is derived from the seeds of Strychnos nux-vomica L. (Loganiaceae), which has been used in traditional medicine to cure a variety of ailments, such as chronic rheumatism, nervous system diseases, dyspepsia, gonorrhea, anemia, and bronchitis, and has analgesic, anti-inflammatory, anti-oxidant, anti-snake venom, and anti-diabetic properties. The anti-diabetic potential of brucine was studied utilizing in vitro, in silico, in vivo, and molecular methods, including streptozotocin-induced diabetic rat models, α-glucosidase and α-amylase inhibitory assays, and via Auto-DocVina software. Brucine exhibits binding affinities of -5.0 to -10.1 Kcal/mol against chosen protein targets, according to an in silico investigation. In vitro studies revealed that brucine inhibited the enzymes α-amylase and α-glucosidase, and brucine (20 mg/kg) reduced blood glucose levels, oral glucose tolerance overload, body weight, glycosylated hemoglobin levels, total cholesterol, triglycerides, low-density lipoprotein, alanine transaminase, aspartate aminotransferase, total bilirubin, and alkaline phosphatase and elevated high-density lipoprotein levels in in vivo studies. The brucine binding energy against certain protein targets ranges from -5.0 to -10.1 Kcal/mol. It has anti-diabetic, anti-hyperlipidemic, hepatoprotective, anti-oxidant, and anti-inflammatory properties, which are mediated via inhibition of α-glucosidase and α-amylase.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。