AdaBoost Metalearning Methodology for Modeling the Incipient Dissociation Conditions of Clathrate Hydrates

用于模拟笼状水合物初始解离条件的 AdaBoost 元学习方法

阅读:5
作者:Sepehr Keshvari, Saeid Abedi Farizhendi, Mohammad M Ghiasi, Amir H Mohammadi

Abstract

This paper proposes the AdaBoost metalearning methodology to combine the outcomes of tree-based models of classification and the regression tree (CART) algorithm for estimating the equilibrium dissociation temperature of clathrate hydrates. In addition to the AdaBoost-CART models, models based on the adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN) approaches were also developed. Training and testing of the models were done utilizing a gathered database of more than 3500 experimental data on incipient dissociation conditions of CO2 and other hydrate systems. With the average absolute relative deviation percent (AARD%) between 0.03 and 0.07, 0.04 and 1.09, and 0.09 and 1.01, which were obtained by the presented AdaBoost-CART, ANFIS, and ANN models, respectively, the targets were reproduced with satisfactory accuracy. However, for all of the studied clathrate hydrate systems, the proposed AdaBoost-CART models provide more reliable results. Indeed, the obtained AARD% values for tree-based models are lower than those of other models.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。