Tuning the Chemical Hardness of Boron Nitride Nanosheets by Doping Carbon for Enhanced Adsorption Capacity

通过掺杂碳来调节氮化硼纳米片的化学硬度以增强吸附能力

阅读:11
作者:Hongping Li, Siwen Zhu, Ming Zhang, Peiwen Wu, Jingyu Pang, Wenshuai Zhu, Wei Jiang, Huaming Li

Abstract

The chemical hardness of adsorbents is an important physicochemical property in the process of adsorption based on the hard and soft acids and bases (HSAB) theory. Tuning chemical hardness of adsorbents modulated by their concomitants is a promising approach to enhance the adsorptive capacity in principle. In the present work, we report an efficient strategy that the adsorption capacity for aromatic sulfocompounds can be enhanced by tuning the chemical hardness. This strategy is first theoretically explored by introducing C element into the network of hexagonal boron nitride (h-BN) based on a series of model materials (model_xC, x = 1-5). Computational results show that the chemical hardness is reduced after gradually C-doping, which may lead to an enhancement of adsorption capacity according to the HSAB theory. Then, a series of C-doped h-BN materials (BCN-x, x = 10-50) were controlled synthesized. All of the as-prepared materials show better adsorption capacities (e.g., 27.43 mg g-1 for BCN-50) than pure h-BN. Experiment results show that the adsorption capacity correlates well with the C content in the BCN-x, which is consistent with the results predicted by theoretical calculation. This strategy may be helpful to rationally design highly efficient adsorbents in separation engineering and may be expanded to similar two-dimensional materials, where the π-π interaction is the dominant driven force.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。