The schizophrenia susceptibility gene dysbindin regulates dendritic spine dynamics

精神分裂症易感基因 dysbindin 调节树突棘动力学

阅读:4
作者:Jie-Min Jia, Zhonghua Hu, Jacob Nordman, Zheng Li

Abstract

Dysbindin is a schizophrenia susceptibility gene required for the development of dendritic spines. The expression of dysbindin proteins is decreased in the brains of schizophrenia patients, and neurons in mice carrying a deletion in the dysbindin gene have fewer dendritic spines. Hence, dysbindin might contribute to the spine pathology of schizophrenia, which manifests as a decrease in the number of dendritic spines. The development of dendritic spines is a dynamic process involving formation, retraction, and transformation of dendritic protrusions. It has yet to be determined whether dysbindin regulates the dynamics of dendritic protrusions. Here we address this question using time-lapse imaging in hippocampal neurons. Our results show that dysbindin is required to stabilize dendritic protrusions. In dysbindin-null neurons, dendritic protrusions are hyperactive in formation, retraction, and conversion between different types of protrusions. We further show that CaMKIIα is required for the stabilization of mushroom/thin spines, and that the hyperactivity of dendritic protrusions in dysbindin-null neurons is attributed in part to decreased CaMKIIα activity resulting from increased inhibition of CaMKIIα by Abi1. These findings elucidate the function of dysbindin in the dynamic morphogenesis of dendritic protrusions, and reveal the essential roles of dysbindin and CaMKIIα in the stabilization of dendritic protrusions during neuronal development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。