Plasticity in brain sexuality is revealed by the rapid actions of steroid hormones

类固醇激素的快速作用揭示了大脑性行为的可塑性

阅读:15
作者:Luke Remage-Healey, Andrew H Bass

Abstract

Divergent steroid hormone profiles can shape the development of male versus female neural phenotypes, but whether they also determine differences in the short-term, neurophysiological patterning of behavior is unknown. We now show that steroid hormone-specific modulation of a vocal pattern generator (VPG) diverges between reproductive morphs in a teleost fish. Only type I male midshipman acoustically court females, whereas type II males steal fertilizations from type I males and, like females, generate only agonistic calls. The androgen 11-ketotestosterone (11kT), but not testosterone (T), rapidly (within 5 min) increases type I VPG output. As now shown, T, but not 11kT, rapidly increases VPG output in type II males and females, consistent with the predominant circulating androgen in type II males and females (T) versus type Is (11kT). Receptor and enzyme antagonists reveal an unexpected divergence in androgen- versus estrogen-dependent mechanisms in, respectively, type II males versus females. Cortisol, the main circulating glucocorticoid, also has divergent actions: suppressing versus increasing VPG output in, respectively, type II males and females versus type Is. In summary, rapid steroid action on VPG activity is uncoupled from gonadal phenotype (convergent between type II males and females), whereas the receptor-mediated mechanisms of androgen action are predicted by gonadal phenotype (both male morphs are sensitive to androgen receptor blockade, whereas females are not). A comparable mix of neuroendocrine traits may explain the widespread distribution of intrasexual behavioral phenotypes among teleosts and vertebrates in general. Moreover, the fundamental organization/activation principles that predict the steroid-dependent expression of "maleness" and "femaleness" may now include rapid steroid actions on the neurophysiological patterning of behavior.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。