Direct Growth of Binder-Free CNTs on a Nickel Foam Substrate for Highly Efficient Symmetric Supercapacitors

在镍泡沫基底上直接生长无粘合剂碳纳米管,用于高效对称超级电容器

阅读:8
作者:Melkiyur Isacfranklin, Yuvakkumar Rathinam, Ravi Ganesan, Dhayalan Velauthapillai

Abstract

In the modern civilized world, energy scarcity and associated environmental pollution are the center of focus in the search for reliable energy storage and harvesting devices. The need to develop cheaper and more competent binder-free electrodes for high-performance supercapacitors has attracted considerable research attention. In this study, two different procedures are followed to enhance the growth of carbon nanotubes (CNT-E and CNT-NF) directly coated on a Ni-foam substrate by a well-functioning chemical vapor deposition (CVD) method. Thus, directly grown optimized CNT electrodes are used as electrodes for electrochemical devices. Furthermore, solid-state symmetric supercapacitors are fabricated using CNT-NF//CNT-NF, and fruitful results are obtained with maximum specific capacitance (250.51 F/g), energy density (68.19 Wh/kg), and power density (2799.77 W/kg) at 1 A/g current density. The device exhibited good cyclic stability, with 92.42% capacitive retention and 99.68% Coulombic efficiency at 10 000 cycles, indicating the suitability of the electrodes for practical applications. This study emphasizes the importance of studying the direct growth of binder-free CNT electrodes to understand the actual behavior of electrodes and the proper storage mechanism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。